The paper describes the studies and the tests for the development of the insulation structure of the 1 MV–50 A gas insulated (SF6) line of the ITER NBI in the SinGap configuration characterized by two kinds of spacers: at least a couple of disk-shaped spacers, designed to be gas tight, and a larger number (several tens) of inner conductor post spacers. To this aim a test campaign has been carried out to assess the capability of standard epoxy spacers to withstand a high dc voltage with frequent short circuits, simulating the operational condition for the ITER NBI. Two computational tools, the first for the epoxy spacer shape optimization under electrostatic distribution and the other for the nonlinear time variant evolution of the electric field and surface charge, have been developed specifically for designing epoxy spacer under dc voltage stress. The results on the optimization of the disk spacer and on the electric field–surface charge time evolution of the post spacer are reported and discussed. The effects of the SF6 radiation induced conductivity on the post spacer are also reported.

The insulation structure of the 1 MV transmission line for the ITER neutral beam injector

SPECOGNA, Ruben;TREVISAN, Francesco
2007-01-01

Abstract

The paper describes the studies and the tests for the development of the insulation structure of the 1 MV–50 A gas insulated (SF6) line of the ITER NBI in the SinGap configuration characterized by two kinds of spacers: at least a couple of disk-shaped spacers, designed to be gas tight, and a larger number (several tens) of inner conductor post spacers. To this aim a test campaign has been carried out to assess the capability of standard epoxy spacers to withstand a high dc voltage with frequent short circuits, simulating the operational condition for the ITER NBI. Two computational tools, the first for the epoxy spacer shape optimization under electrostatic distribution and the other for the nonlinear time variant evolution of the electric field and surface charge, have been developed specifically for designing epoxy spacer under dc voltage stress. The results on the optimization of the disk spacer and on the electric field–surface charge time evolution of the post spacer are reported and discussed. The effects of the SF6 radiation induced conductivity on the post spacer are also reported.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0920379607001238-main.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
R48_fed_insulation_specogna.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0920379607001238-main.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/879513
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 11
social impact