We extend the classical Enriques–Petri theorem to s-subcanonical projectively normal curves, proving that such a curve is (s+2)-gonal if and only if it is contained in a surface of minimal degree. We also show that any Fermat hypersurface of degree s+2 is apolar to a s-subcanonical (s+2)-gonal projectively normal curve, and vice versa.
Fermat hypersurfaces and subcanonical curves
DE POI, Pietro;ZUCCONI, Francesco
2011-01-01
Abstract
We extend the classical Enriques–Petri theorem to s-subcanonical projectively normal curves, proving that such a curve is (s+2)-gonal if and only if it is contained in a surface of minimal degree. We also show that any Fermat hypersurface of degree s+2 is apolar to a s-subcanonical (s+2)-gonal projectively normal curve, and vice versa.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DZ2.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
361.6 kB
Formato
Adobe PDF
|
361.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.