The time independent Schrödinger equation stems from quantum theory axioms as a partial differential equation. This work aims at providing a novel discrete geometric formulation of this equation in terms of integral variables associated with precise geometric elements of a pair of three-dimensional interlocked grids, one of them based on tetrahedra. We will deduce, in a purely geometric way, a computationally efficient discrete counterpart of the time independent Schrödinger equation in terms of a standard symmetric eigenvalue problem. Moreover boundary and interface conditions together with non homogeneity and anisotropy of the media involved are accounted for in a straightforward manner. This approach yields to a sensible computational advantage with respect to the finite element method, where a generalized eigenvalue problem has to be solved instead. Such a modeling tool can be used for analyzing a number of quantum phenomena in modern nano-structured devices, where the accounting of the real 3D geometry is a crucial issue.

A discrete geometric approach to solving time independent Schrodinger equation

SPECOGNA, Ruben;TREVISAN, Francesco
2011

Abstract

The time independent Schrödinger equation stems from quantum theory axioms as a partial differential equation. This work aims at providing a novel discrete geometric formulation of this equation in terms of integral variables associated with precise geometric elements of a pair of three-dimensional interlocked grids, one of them based on tetrahedra. We will deduce, in a purely geometric way, a computationally efficient discrete counterpart of the time independent Schrödinger equation in terms of a standard symmetric eigenvalue problem. Moreover boundary and interface conditions together with non homogeneity and anisotropy of the media involved are accounted for in a straightforward manner. This approach yields to a sensible computational advantage with respect to the finite element method, where a generalized eigenvalue problem has to be solved instead. Such a modeling tool can be used for analyzing a number of quantum phenomena in modern nano-structured devices, where the accounting of the real 3D geometry is a crucial issue.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021999110006091-main.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 503.9 kB
Formato Adobe PDF
503.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
REG73_jcp_specogna_schrodinger.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 648.49 kB
Formato Adobe PDF
648.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/881506
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact