In this work we have simulated the ION and its ballistic limit I-BL of MOSFETs designed according to the 2003 Roadmap down to the 45 nm node, by using a Full-Band, self-consistent Monte Carlo simulator with quantum mechanical corrections. Our results show that scattering plays an important role by limiting the current for gate length down to at least 14 nm; the impact of quasi-ballistic transport increases for L-G below approximately 50 nm and contribute most part of the ION improvements related to scaling. Thanks to a lower transversal electric field, the DG SOI MOSFETs with low channel doping allow to get closer to the ballistic limit than bulk counterparts.
Enhanced Ballisticity in nano-MOSFETs along the ITRS Roadmap: A Monte Carlo Study
ESSENI, David;PALESTRI, Pierpaolo;SELMI, Luca;
2004-01-01
Abstract
In this work we have simulated the ION and its ballistic limit I-BL of MOSFETs designed according to the 2003 Roadmap down to the 45 nm node, by using a Full-Band, self-consistent Monte Carlo simulator with quantum mechanical corrections. Our results show that scattering plays an important role by limiting the current for gate length down to at least 14 nm; the impact of quasi-ballistic transport increases for L-G below approximately 50 nm and contribute most part of the ION improvements related to scaling. Thanks to a lower transversal electric field, the DG SOI MOSFETs with low channel doping allow to get closer to the ballistic limit than bulk counterparts.File | Dimensione | Formato | |
---|---|---|---|
2004_12_IEDM_Eminente_EnhacedBallisticity.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
258.25 kB
Formato
Adobe PDF
|
258.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.