In several heat exchange devices, phase transition occurs in a small region adjacent to the wall, and the secondary phase is present only in a thin layer running along the wall, allowing for decoupling between the fluid dynamic computation of the core flow and the numerical analysis of the secondary phase. This happens in finned dehumidifier, but also in spray cooling or defogging problems. In a finned dehumidifer, or in air conditioning evaporators, the secondary phase is provided by moist air condensation, and may consist of discrete droplets, continuous film or a collection of rivulets. Several levels of approximation may be adopted, depending on the specific problem: perfect drain assumption requires only the addition of a heat source in the energy equation, otherwise the water layer behaviour has to be taken into account. Furthermore, a heat and mass transfer analogy may or may not be appropriate; in the latter case, the solution of the diffusion equation of humidity is required. Here, different levels of approximation are compared with literature experimental data for condensation over a vertical fin. Results show that thermal resistance and gravity effects, in the considered geometry, are negligible, and the condensate takes the form of a collection of still droplets, rather than a flowing film. This has an effect on the actual heat transfer and water layer build-up, and the variation of temperature along the fin induces some discrepancy with respect to the straightforward application of the heat and mass transfer analogy. (C) 2008 Elsevier Ltd. All rights reserved.
Numerical modelling of head and mass transfer in finned dehumidifier
CROCE, Giulio;DE CANDIDO, Erika;D'AGARO, Paola
2009-01-01
Abstract
In several heat exchange devices, phase transition occurs in a small region adjacent to the wall, and the secondary phase is present only in a thin layer running along the wall, allowing for decoupling between the fluid dynamic computation of the core flow and the numerical analysis of the secondary phase. This happens in finned dehumidifier, but also in spray cooling or defogging problems. In a finned dehumidifer, or in air conditioning evaporators, the secondary phase is provided by moist air condensation, and may consist of discrete droplets, continuous film or a collection of rivulets. Several levels of approximation may be adopted, depending on the specific problem: perfect drain assumption requires only the addition of a heat source in the energy equation, otherwise the water layer behaviour has to be taken into account. Furthermore, a heat and mass transfer analogy may or may not be appropriate; in the latter case, the solution of the diffusion equation of humidity is required. Here, different levels of approximation are compared with literature experimental data for condensation over a vertical fin. Results show that thermal resistance and gravity effects, in the considered geometry, are negligible, and the condensate takes the form of a collection of still droplets, rather than a flowing film. This has an effect on the actual heat transfer and water layer build-up, and the variation of temperature along the fin induces some discrepancy with respect to the straightforward application of the heat and mass transfer analogy. (C) 2008 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
2009-ATE.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
555.52 kB
Formato
Adobe PDF
|
555.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.