The limited depth-of-field of some cameras prevents them from capturing perfectly focused images when the imaged scene covers a large distance range. In order to compensate for this problem, image fusion has been exploited for combining images captured with different camera settings, thus yielding a higher quality all-in-focus image. Since most current approaches for image fusion rely on maximizing the spatial frequency of the composed image, the fusion process is sensitive to noise. In this paper, a new algorithm for computing the all-in-focus image from a sequence of images captured with a low depth-of-field camera is presented. The proposed approach adaptively fuses the different frames of the focus sequence in order to reduce noise while preserving image features. The algorithm consists of three stages: 1) focus measure; 2) selectivity measure; 3) and image fusion. An extensive set of experimental tests has been carried out in order to compare the proposed algorithm with state-of-the-art all-in-focus methods using both synthetic and real sequences. The obtained results show the advantages of the proposed scheme even for high levels of noise.

Generation of All-in-Focus Images by Noise-Robust Selective Fusion of Limited Depth-of-Field Images

FUSIELLO, Andrea
2013-01-01

Abstract

The limited depth-of-field of some cameras prevents them from capturing perfectly focused images when the imaged scene covers a large distance range. In order to compensate for this problem, image fusion has been exploited for combining images captured with different camera settings, thus yielding a higher quality all-in-focus image. Since most current approaches for image fusion rely on maximizing the spatial frequency of the composed image, the fusion process is sensitive to noise. In this paper, a new algorithm for computing the all-in-focus image from a sequence of images captured with a low depth-of-field camera is presented. The proposed approach adaptively fuses the different frames of the focus sequence in order to reduce noise while preserving image features. The algorithm consists of three stages: 1) focus measure; 2) selectivity measure; 3) and image fusion. An extensive set of experimental tests has been carried out in order to compare the proposed algorithm with state-of-the-art all-in-focus methods using both synthetic and real sequences. The obtained results show the advantages of the proposed scheme even for high levels of noise.
File in questo prodotto:
File Dimensione Formato  
tip13.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/890946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 83
social impact