Topological entropy is very well-understood for endomorphisms of compact Abelian groups. A fundamental result in this context is the so-called Yuzvinski Formula, which is the key step in finding the topological entropy of any compact group endomorphism. The goal of this paper is to prove a perfect analog of the Yuzvinski Formula for the algebraic entropy, namely, the Algebraic Yuzvinski Formula, giving the value of the algebraic entropy of an endomorphism of a finite-dimensional rational vector space as the Mahler measure of its characteristic polynomial.

Algebraic Yuzvinski Formula

GIORDANO BRUNO, Anna;Virili, Simone
2015-01-01

Abstract

Topological entropy is very well-understood for endomorphisms of compact Abelian groups. A fundamental result in this context is the so-called Yuzvinski Formula, which is the key step in finding the topological entropy of any compact group endomorphism. The goal of this paper is to prove a perfect analog of the Yuzvinski Formula for the algebraic entropy, namely, the Algebraic Yuzvinski Formula, giving the value of the algebraic entropy of an endomorphism of a finite-dimensional rational vector space as the Mahler measure of its characteristic polynomial.
File in questo prodotto:
File Dimensione Formato  
IRIS-yuz.pdf

Open Access dal 02/02/2019

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 412.91 kB
Formato Adobe PDF
412.91 kB Adobe PDF Visualizza/Apri
yuz-jalgebra.pdf

non disponibili

Descrizione: Articolo principale, versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 574.34 kB
Formato Adobe PDF
574.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/892343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact