Topological entropy is very well-understood for endomorphisms of compact Abelian groups. A fundamental result in this context is the so-called Yuzvinski Formula, which is the key step in finding the topological entropy of any compact group endomorphism. The goal of this paper is to prove a perfect analog of the Yuzvinski Formula for the algebraic entropy, namely, the Algebraic Yuzvinski Formula, giving the value of the algebraic entropy of an endomorphism of a finite-dimensional rational vector space as the Mahler measure of its characteristic polynomial.
Algebraic Yuzvinski Formula
GIORDANO BRUNO, Anna;Virili, Simone
2015-01-01
Abstract
Topological entropy is very well-understood for endomorphisms of compact Abelian groups. A fundamental result in this context is the so-called Yuzvinski Formula, which is the key step in finding the topological entropy of any compact group endomorphism. The goal of this paper is to prove a perfect analog of the Yuzvinski Formula for the algebraic entropy, namely, the Algebraic Yuzvinski Formula, giving the value of the algebraic entropy of an endomorphism of a finite-dimensional rational vector space as the Mahler measure of its characteristic polynomial.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IRIS-yuz.pdf
Open Access dal 02/02/2019
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
412.91 kB
Formato
Adobe PDF
|
412.91 kB | Adobe PDF | Visualizza/Apri |
yuz-jalgebra.pdf
non disponibili
Descrizione: Articolo principale, versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
574.34 kB
Formato
Adobe PDF
|
574.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.