We study the endomorphisms φ of abelian groups G having a “small” algebraic entropy h (where “small” usually means h(φ) < log 2). Using essentially elementary tools from linear algebra, we show that this study can be carried out in the group Q^d, where an automorphism φ with h(φ) < log 2 must have all eigenvalues in the open circle of radius 2, centered at 0 and φ must leave invariant a lattice in Q^d, i.e., be essentially an automorphism of Z^d. In particular, all eigenvalues of an automorphism φ with h(φ) = 0 must be roots of unity. This is a particular case of a more general fact known as Algebraic Yuzvinskii Theorem. We discuss other particular cases of this fact and we give some applications of our main results.

Endomorphisms of abelian groups with small algebraic entropy

DIKRANJAN, Dikran;
2013-01-01

Abstract

We study the endomorphisms φ of abelian groups G having a “small” algebraic entropy h (where “small” usually means h(φ) < log 2). Using essentially elementary tools from linear algebra, we show that this study can be carried out in the group Q^d, where an automorphism φ with h(φ) < log 2 must have all eigenvalues in the open circle of radius 2, centered at 0 and φ must leave invariant a lattice in Q^d, i.e., be essentially an automorphism of Z^d. In particular, all eigenvalues of an automorphism φ with h(φ) = 0 must be roots of unity. This is a particular case of a more general fact known as Algebraic Yuzvinskii Theorem. We discuss other particular cases of this fact and we give some applications of our main results.
File in questo prodotto:
File Dimensione Formato  
LAA12216.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 391.82 kB
Formato Adobe PDF
391.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/892944
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact