Tool geometry optimization, workpiece material characterization, process monitoring and optimization are based on the measurement of cutting forces by using machining dynamometers. Commercial dynamometers cover a wide range of machining applications, nevertheless there is a lack of measuring devices suitable for investigating milling and drilling applications with relatively small cutters and high spindle speeds. In this work, the development and testing of an innovative plate dynamometer designed for this purpose is discussed. The new measuring system was based on three high-sensitive triaxial piezoelectric force sensors arranged in a novel triangular configuration. Component design was optimized by using FE numerical approaches, according to the general guidelines derived from mathematical modeling of sensor dynamics. The prototype of the proposed device was manufactured and experimentally tested against two high-end commercial plate dynamometers by performing static calibration, modal analysis and cutting tests. Experimental results proved the excellent characteristics of the new device and its effectiveness for investigating advanced machining applications.
Development of an innovative plate dynamometer for advanced milling and drilling applications
TOTIS, Giovanni;SORTINO, Marco;
2014-01-01
Abstract
Tool geometry optimization, workpiece material characterization, process monitoring and optimization are based on the measurement of cutting forces by using machining dynamometers. Commercial dynamometers cover a wide range of machining applications, nevertheless there is a lack of measuring devices suitable for investigating milling and drilling applications with relatively small cutters and high spindle speeds. In this work, the development and testing of an innovative plate dynamometer designed for this purpose is discussed. The new measuring system was based on three high-sensitive triaxial piezoelectric force sensors arranged in a novel triangular configuration. Component design was optimized by using FE numerical approaches, according to the general guidelines derived from mathematical modeling of sensor dynamics. The prototype of the proposed device was manufactured and experimentally tested against two high-end commercial plate dynamometers by performing static calibration, modal analysis and cutting tests. Experimental results proved the excellent characteristics of the new device and its effectiveness for investigating advanced machining applications.File | Dimensione | Formato | |
---|---|---|---|
2014_MEAS_Dyn_Aachen_PUBB.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
5.53 MB
Formato
Adobe PDF
|
5.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.