This tutorial review deals with the methodological procedures that can be used to obtain accurate molecular sizes in solution from diffusion NMR spectroscopy. The critical aspects associated with the estimation of the size of molecules from the measured translational self-diffusion coefficient, using the Stokes - Einstein equation, are highlighted and discussed. From a theoretical point of view, it is shown how to take into account the size of the solute with respect to that of the solvent and its non-spherical shape using the appropriate correction factors in the frictional coefficient. From a practical point of view, the advantages of introducing an internal standard in the sample are presented. Initially, non-aggregating systems are considered in an attempt to clarify what hydrodynamic dimensions mean. Successively, aggregating systems are addressed showing how it is possible to understand the aggregation level and derive the thermodynamic parameters for some illustrative aggregation processes.

Determining accurate molecular sizes in solution through NMR diffusion spectroscopy

ZUCCACCIA, Daniele
2008-01-01

Abstract

This tutorial review deals with the methodological procedures that can be used to obtain accurate molecular sizes in solution from diffusion NMR spectroscopy. The critical aspects associated with the estimation of the size of molecules from the measured translational self-diffusion coefficient, using the Stokes - Einstein equation, are highlighted and discussed. From a theoretical point of view, it is shown how to take into account the size of the solute with respect to that of the solvent and its non-spherical shape using the appropriate correction factors in the frictional coefficient. From a practical point of view, the advantages of introducing an internal standard in the sample are presented. Initially, non-aggregating systems are considered in an attempt to clarify what hydrodynamic dimensions mean. Successively, aggregating systems are addressed showing how it is possible to understand the aggregation level and derive the thermodynamic parameters for some illustrative aggregation processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/949770
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 492
  • ???jsp.display-item.citation.isi??? 483
social impact