Fully simple semihypergroups have been introduced in [9], motivated by the study of the transitivity of the fundamental relation β in semihypergroups. Here, we determine a transver- sal of isomorphism classes of fully simple semihypergroups with a right absorbing element. The structure of that transversal can be described by means of certain transitive, acyclic digraphs. Moreover, we prove that, if n is an integer ≥2, then the number of isomorphism classes of fully simple semihypergroups of size n + 1, with a right absorbing element, is the (n + 1)-th term of sequence A000712 in [20], namely, nk=0 p(k)p(n − k), where p(k) denotes the number of nonincreasing partitions of integer k.

Fully simple semihypergroups, transitive digraphs, and sequence A000712

FASINO, Dario;FRENI, Domenico;
2014-01-01

Abstract

Fully simple semihypergroups have been introduced in [9], motivated by the study of the transitivity of the fundamental relation β in semihypergroups. Here, we determine a transver- sal of isomorphism classes of fully simple semihypergroups with a right absorbing element. The structure of that transversal can be described by means of certain transitive, acyclic digraphs. Moreover, we prove that, if n is an integer ≥2, then the number of isomorphism classes of fully simple semihypergroups of size n + 1, with a right absorbing element, is the (n + 1)-th term of sequence A000712 in [20], namely, nk=0 p(k)p(n − k), where p(k) denotes the number of nonincreasing partitions of integer k.
File in questo prodotto:
File Dimensione Formato  
Fully simple semihypergroups,transitive digraphs, and sequence A000712 (JOA),1-s2.0-S0021869314003305-main.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 499.69 kB
Formato Adobe PDF
499.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/976946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact