We investigate Si/Si0.85Ge0.15 fully depleted-SOI tunnel FET (TFET) devices operated in the electron-hole bilayer (EHB) mode. The application of negative bias on front gate and positive bias on back gate results in confined hole and electron layers that are expected to enable vertical bandto- band tunneling (BTBT). The idea of the EHB-TFET device is to enhance the tunneling current by expanding the BTBT generation area from the narrow lateral source/channel junction to the entire channel region. Our systematic measurements on a variety of TFETs with variable geometry and channel materials do not offer support to this attractive concept. Self-consistent simulations confirm that the vertical BTBT transitions do not produce an appreciable current in our devices, due to sizeand bias-induced quantization, effective mass anisotropy, and incomplete formation of the bilayer. We examine the conditions for efficient vertical BTBT to occur and show that they cannot be met simultaneously, at least in Si or Si/SiGe devices.

Electron-Hole Bilayer TFET: Experiments and Comments

REVELANT, Alberto;
2014-01-01

Abstract

We investigate Si/Si0.85Ge0.15 fully depleted-SOI tunnel FET (TFET) devices operated in the electron-hole bilayer (EHB) mode. The application of negative bias on front gate and positive bias on back gate results in confined hole and electron layers that are expected to enable vertical bandto- band tunneling (BTBT). The idea of the EHB-TFET device is to enhance the tunneling current by expanding the BTBT generation area from the narrow lateral source/channel junction to the entire channel region. Our systematic measurements on a variety of TFETs with variable geometry and channel materials do not offer support to this attractive concept. Self-consistent simulations confirm that the vertical BTBT transitions do not produce an appreciable current in our devices, due to sizeand bias-induced quantization, effective mass anisotropy, and incomplete formation of the bilayer. We examine the conditions for efficient vertical BTBT to occur and show that they cannot be met simultaneously, at least in Si or Si/SiGe devices.
File in questo prodotto:
File Dimensione Formato  
2014_Revelant_Electron-Hole_Bilayer.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1001146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
social impact