We consider a beam whose cross section is a tubular neighborhood, with thickness scaling with a parameter δε, of a simple curve γ whose length scales with ε. To model a thin-walled beam we assume that δε goes to zero faster than ε, and we measure the rate of convergence by a slenderness parameter s which is the ratio between ε2 and δε. In this Part I of the work we focus on the case where the curve is open. Under the assumption that the beam has a linearly elastic behavior, for s ∈ {0, 1} we derive two one-dimensional Γ-limit problems by letting ε go to zero. The limit models are obtained for a fully anisotropic and inhomogeneous material, thus making the theory applicable for composite thin-walled beams. The approach recovers in a systematic way, and gives account of, many features of the beam models in the theory of Vlasov.

Linear Models for Composite Thin-Walled Beams by $Gamma$-Convergence. Part I: Open Cross Sections

DAVINI, Cesare;FREDDI, Lorenzo;
2014-01-01

Abstract

We consider a beam whose cross section is a tubular neighborhood, with thickness scaling with a parameter δε, of a simple curve γ whose length scales with ε. To model a thin-walled beam we assume that δε goes to zero faster than ε, and we measure the rate of convergence by a slenderness parameter s which is the ratio between ε2 and δε. In this Part I of the work we focus on the case where the curve is open. Under the assumption that the beam has a linearly elastic behavior, for s ∈ {0, 1} we derive two one-dimensional Γ-limit problems by letting ε go to zero. The limit models are obtained for a fully anisotropic and inhomogeneous material, thus making the theory applicable for composite thin-walled beams. The approach recovers in a systematic way, and gives account of, many features of the beam models in the theory of Vlasov.
File in questo prodotto:
File Dimensione Formato  
published-95147.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 426.63 kB
Formato Adobe PDF
426.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1001346
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact