We propose a simulated annealing approach for the examination timetabling problem, as formulated in the 2nd International Timetabling Competition. We apply a single-stage procedure in which infeasible solutions are included in the search space and dealt with using suitable penalties. Upon our approach, we perform a statistically-principled experimental analysis, in order to understand the effect of parameter selection on the performance of our algorithm, and to devise a feature-based parameter tuning strategy, which can achieve better generalization on unseen instances with respect to a one-fits-all parameter setting. The outcome of this work is that this rather straightforward search method, if properly tuned, is able to compete with all state-of-the-art specialized solvers on the available instances. As a byproduct of this analysis, we propose and publish a new, larger set of (artificial) instances that could be used for tuning and also as a ground for future comparisons.
Titolo: | Feature-based tuning of single-stage simulated annealing for examination timetabling |
Autori: | URLI, Tommaso (Corresponding) |
Data di pubblicazione: | 2017 |
Rivista: | |
Abstract: | We propose a simulated annealing approach for the examination timetabling problem, as formulated in the 2nd International Timetabling Competition. We apply a single-stage procedure in which infeasible solutions are included in the search space and dealt with using suitable penalties. Upon our approach, we perform a statistically-principled experimental analysis, in order to understand the effect of parameter selection on the performance of our algorithm, and to devise a feature-based parameter tuning strategy, which can achieve better generalization on unseen instances with respect to a one-fits-all parameter setting. The outcome of this work is that this rather straightforward search method, if properly tuned, is able to compete with all state-of-the-art specialized solvers on the available instances. As a byproduct of this analysis, we propose and publish a new, larger set of (artificial) instances that could be used for tuning and also as a ground for future comparisons. |
Handle: | http://hdl.handle.net/11390/1069900 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
paper.pdf | Post-prints dell'autore | Documento in Post-print | Non pubblico | Accesso ristretto Richiedi una copia |