In this paper the topic of robust model based trajectory planning for mechatronic systems is dealt with. The aim is to improve, using sensitivity techniques, the robustness to parametric mismatches of commonly used indirect variational methods. The necessary optimality conditions are derived using Pontryagin’s minimum principle, and the robustness condition are obtained by imposing boundary constraints on sensitivity functions. Unlike other methods available in literature, the proposed method can be applied to nonlinear models. Several test cases are reported to show the unconstrained and the constrained solution for nonlinear mechatronic systems.

Robustness improvement of trajectory planning algorithms

BOSCARIOL, Paolo;Vidoni, R.;GASPARETTO, Alessandro
2015-01-01

Abstract

In this paper the topic of robust model based trajectory planning for mechatronic systems is dealt with. The aim is to improve, using sensitivity techniques, the robustness to parametric mismatches of commonly used indirect variational methods. The necessary optimality conditions are derived using Pontryagin’s minimum principle, and the robustness condition are obtained by imposing boundary constraints on sensitivity functions. Unlike other methods available in literature, the proposed method can be applied to nonlinear models. Several test cases are reported to show the unconstrained and the constrained solution for nonlinear mechatronic systems.
File in questo prodotto:
File Dimensione Formato  
OS13-024.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1069996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact