Departing from a suitable categorical description of closure operators, this paper dualizes this notion and introduces some basic properties of dual closure operators. Usually these operators act on quotients rather than subobjects, and much attention is being paid here to their key examples in algebra and topology, which include the formation of monotone quotients (Eilenberg-Whyburn) and concordant quotients (Coffins). In fair categorical generality, these constructions are shown to be factors of the fundamental correspondence that relates connectecinesses and disconnectednesses in topology, as well as torsion classes and torsion-free classes in algebra. Depending on a given cogenerator, the paper also establishes a non-trivial correspondence between closure operators and dual closure operators in the category of R-modules. Dual closure operators must be carefully distinguished from interior operators that have been studied by other authors

Dual closure operators and their applications

DIKRANJAN, Dikran;
2015-01-01

Abstract

Departing from a suitable categorical description of closure operators, this paper dualizes this notion and introduces some basic properties of dual closure operators. Usually these operators act on quotients rather than subobjects, and much attention is being paid here to their key examples in algebra and topology, which include the formation of monotone quotients (Eilenberg-Whyburn) and concordant quotients (Coffins). In fair categorical generality, these constructions are shown to be factors of the fundamental correspondence that relates connectecinesses and disconnectednesses in topology, as well as torsion classes and torsion-free classes in algebra. Depending on a given cogenerator, the paper also establishes a non-trivial correspondence between closure operators and dual closure operators in the category of R-modules. Dual closure operators must be carefully distinguished from interior operators that have been studied by other authors
File in questo prodotto:
File Dimensione Formato  
Dclop-20June2014.pdf

Open Access dal 02/11/2019

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 483.74 kB
Formato Adobe PDF
483.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1070661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact