Here, we propose a strain gauge based on single-layer MoSe2 and WSe2 and show that, in these materials, the strain induced modulation of inter-valley phonon scattering leads to large mobility changes, which in turn result in highly sensitive strain gauges. By employing density-functional theory bandstructure calculations, comprehensive scattering models, and the linearized Boltzmann equation, we explain the physical mechanisms for the high sensitivity to strain of the resistivity in single-layer MoSe2 and WSe2, discuss the reduction of the gauge factor produced by extrinsic scattering sources (e.g., chemical impurities), and propose ways to mitigate such sensitivity degradation.

Very large strain gauges based on single layer MoSe2 and WSe2 for sensing applications

ESSENI, David
2015-01-01

Abstract

Here, we propose a strain gauge based on single-layer MoSe2 and WSe2 and show that, in these materials, the strain induced modulation of inter-valley phonon scattering leads to large mobility changes, which in turn result in highly sensitive strain gauges. By employing density-functional theory bandstructure calculations, comprehensive scattering models, and the linearized Boltzmann equation, we explain the physical mechanisms for the high sensitivity to strain of the resistivity in single-layer MoSe2 and WSe2, discuss the reduction of the gauge factor produced by extrinsic scattering sources (e.g., chemical impurities), and propose ways to mitigate such sensitivity degradation.
File in questo prodotto:
File Dimensione Formato  
15_Hosseini_VeryLargeStrain.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 906.91 kB
Formato Adobe PDF
906.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1071713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact