Let G be a topological group, let ϕ be a continuous endomorphism of G and let H be a closed ϕ-invariant subgroup of G. We study whether the topological entropy is an additive invariant, that is, $$egin{eqnarray}h_{ ext{top}}({itphi})=h_{ ext{top}}({itphi} estriction_{H})+h_{ ext{top}}(ar{{itphi}}),end{eqnarray}$$ where ϕ¯:G/H→G/H is the map induced by ϕ. We concentrate on the case when G is totally disconnected locally compact and H is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever ϕH=H and ker(ϕ)≤H. As an application, we give a dynamical interpretation of the scale s(ϕ) by showing that logs(ϕ) is the topological entropy of a suitable map induced by ϕ. Finally, we give necessary and sufficient conditions for the equality logs(ϕ)=htop(ϕ) to hold.© Cambridge University Press, 2016

Topological entropy in totally disconnected locally compact groups

GIORDANO BRUNO, Anna;Virili, Simone
2017-01-01

Abstract

Let G be a topological group, let ϕ be a continuous endomorphism of G and let H be a closed ϕ-invariant subgroup of G. We study whether the topological entropy is an additive invariant, that is, $$egin{eqnarray}h_{ ext{top}}({itphi})=h_{ ext{top}}({itphi} estriction_{H})+h_{ ext{top}}(ar{{itphi}}),end{eqnarray}$$ where ϕ¯:G/H→G/H is the map induced by ϕ. We concentrate on the case when G is totally disconnected locally compact and H is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever ϕH=H and ker(ϕ)≤H. As an application, we give a dynamical interpretation of the scale s(ϕ) by showing that logs(ϕ) is the topological entropy of a suitable map induced by ϕ. Finally, we give necessary and sufficient conditions for the equality logs(ϕ)=htop(ϕ) to hold.© Cambridge University Press, 2016
File in questo prodotto:
File Dimensione Formato  
IRIS-AThtop.pdf

Open Access dal 12/10/2016

Descrizione: Articolo principale, Accesso Aperto MIUR
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 343.51 kB
Formato Adobe PDF
343.51 kB Adobe PDF Visualizza/Apri
schedaprogetto.pdf

accesso aperto

Descrizione: Scheda di progetto
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 81.27 kB
Formato Adobe PDF
81.27 kB Adobe PDF Visualizza/Apri
_ETS_S014338571500139Xa.pdf

non disponibili

Descrizione: Articolo principale, versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 351.27 kB
Formato Adobe PDF
351.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1091772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact