Let G be a topological group, let ϕ be a continuous endomorphism of G and let H be a closed ϕ-invariant subgroup of G. We study whether the topological entropy is an additive invariant, that is, $$egin{eqnarray}h_{ ext{top}}({itphi})=h_{ ext{top}}({itphi} estriction_{H})+h_{ ext{top}}(ar{{itphi}}),end{eqnarray}$$ where ϕ¯:G/H→G/H is the map induced by ϕ. We concentrate on the case when G is totally disconnected locally compact and H is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever ϕH=H and ker(ϕ)≤H. As an application, we give a dynamical interpretation of the scale s(ϕ) by showing that logs(ϕ) is the topological entropy of a suitable map induced by ϕ. Finally, we give necessary and sufficient conditions for the equality logs(ϕ)=htop(ϕ) to hold.© Cambridge University Press, 2016
Topological entropy in totally disconnected locally compact groups
GIORDANO BRUNO, Anna;Virili, Simone
2017-01-01
Abstract
Let G be a topological group, let ϕ be a continuous endomorphism of G and let H be a closed ϕ-invariant subgroup of G. We study whether the topological entropy is an additive invariant, that is, $$egin{eqnarray}h_{ ext{top}}({itphi})=h_{ ext{top}}({itphi} estriction_{H})+h_{ ext{top}}(ar{{itphi}}),end{eqnarray}$$ where ϕ¯:G/H→G/H is the map induced by ϕ. We concentrate on the case when G is totally disconnected locally compact and H is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever ϕH=H and ker(ϕ)≤H. As an application, we give a dynamical interpretation of the scale s(ϕ) by showing that logs(ϕ) is the topological entropy of a suitable map induced by ϕ. Finally, we give necessary and sufficient conditions for the equality logs(ϕ)=htop(ϕ) to hold.© Cambridge University Press, 2016File | Dimensione | Formato | |
---|---|---|---|
IRIS-AThtop.pdf
Open Access dal 12/10/2016
Descrizione: Articolo principale, Accesso Aperto MIUR
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
343.51 kB
Formato
Adobe PDF
|
343.51 kB | Adobe PDF | Visualizza/Apri |
schedaprogetto.pdf
accesso aperto
Descrizione: Scheda di progetto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
81.27 kB
Formato
Adobe PDF
|
81.27 kB | Adobe PDF | Visualizza/Apri |
_ETS_S014338571500139Xa.pdf
non disponibili
Descrizione: Articolo principale, versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
351.27 kB
Formato
Adobe PDF
|
351.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.