In this paper we study the problem of the existence of homoclinic solutions to a Schrodinger equation of the form x''-V(t)x+x(3)=0, where V is a stepwise potential. The technique of proof is based on a topological method, relying on the properties of the transformation of continuous planar paths (the S.A.P. method), together with the application of the classical Conley-Wazewski method.
Multiple homoclinic solutions for a one-dimensional Schrödinger equation
PAPINI, Duccio
2016-01-01
Abstract
In this paper we study the problem of the existence of homoclinic solutions to a Schrodinger equation of the form x''-V(t)x+x(3)=0, where V is a stepwise potential. The technique of proof is based on a topological method, relying on the properties of the transformation of continuous planar paths (the S.A.P. method), together with the application of the classical Conley-Wazewski method.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DamPa_DCDSS2016.pdf
non disponibili
Descrizione: Versione Editoriale dell'articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
428.68 kB
Formato
Adobe PDF
|
428.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
DaPa-Schroedinger-postprint.pdf
Open Access dal 01/09/2017
Descrizione: Versione accettata dell'articolo
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
373.29 kB
Formato
Adobe PDF
|
373.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.