In this paper we study the problem of the existence of homoclinic solutions to a Schrodinger equation of the form x''-V(t)x+x(3)=0, where V is a stepwise potential. The technique of proof is based on a topological method, relying on the properties of the transformation of continuous planar paths (the S.A.P. method), together with the application of the classical Conley-Wazewski method.

Multiple homoclinic solutions for a one-dimensional Schrödinger equation

PAPINI, Duccio
2016-01-01

Abstract

In this paper we study the problem of the existence of homoclinic solutions to a Schrodinger equation of the form x''-V(t)x+x(3)=0, where V is a stepwise potential. The technique of proof is based on a topological method, relying on the properties of the transformation of continuous planar paths (the S.A.P. method), together with the application of the classical Conley-Wazewski method.
File in questo prodotto:
File Dimensione Formato  
DamPa_DCDSS2016.pdf

non disponibili

Descrizione: Versione Editoriale dell'articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 428.68 kB
Formato Adobe PDF
428.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
DaPa-Schroedinger-postprint.pdf

Open Access dal 01/09/2017

Descrizione: Versione accettata dell'articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 373.29 kB
Formato Adobe PDF
373.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1091930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact