We consider the problem of controlling the transmission rate in a communication network where each node adjusts its own transmission rate exclusively based on the physical medium occupation (the band occupancy of the aggregate complementary nodes). We show how to design a decentralized control for maximizing both band occupancy and fairness. If the network is fully connected, the problem admits a simple solution. Difficulties arise in the case of partially connected networks, and in the presence of time varying network topologies and delays. General conditions are given which, by properly tuning control parameters, assure stability. These conditions are conservative and affect the system performance. However, we show that, in the case of symmetric connections, stability can be studied based on the system eigenvalues even in the presence of topology switchings. Less conservative bounds can be inferred by exploiting known properties of the eigenvalues of the adjacency matrix of a graph. We finally consider the multi channel case, in which nodes may jump among channels: The previous scheme can be extended to this case and asymptotically ensures uniform channel exploitation. © 2015 IEEE.

A robust decentralized control for channel sharing communication

BLANCHINI, Franco;CASAGRANDE, Daniele;Giordano, Giulia;MONTESSORO, Pier Luca
2017-01-01

Abstract

We consider the problem of controlling the transmission rate in a communication network where each node adjusts its own transmission rate exclusively based on the physical medium occupation (the band occupancy of the aggregate complementary nodes). We show how to design a decentralized control for maximizing both band occupancy and fairness. If the network is fully connected, the problem admits a simple solution. Difficulties arise in the case of partially connected networks, and in the presence of time varying network topologies and delays. General conditions are given which, by properly tuning control parameters, assure stability. These conditions are conservative and affect the system performance. However, we show that, in the case of symmetric connections, stability can be studied based on the system eigenvalues even in the presence of topology switchings. Less conservative bounds can be inferred by exploiting known properties of the eigenvalues of the adjacency matrix of a graph. We finally consider the multi channel case, in which nodes may jump among channels: The previous scheme can be extended to this case and asymptotically ensures uniform channel exploitation. © 2015 IEEE.
File in questo prodotto:
File Dimensione Formato  
Bla_Cas_Gio_Mon_TCNS_2015.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1095834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact