Speck is a meat product obtained from the deboned leg of pork that is salted, smoked and seasoned for four to six months. During speck seasoning, Eurotium rubrum and Penicillium solitum grow on the surface and collaborate with other moulds and tissue enzymes to produce the typical aroma. Both of these strains usually predominate over other moulds. However, moulds producing ochratoxins, such as Aspergillus ochraceus and Penicillium nordicum, can also co-grow on speck and produce ochratoxin A (OTA). Consequently, speck could represent a potential health risk for consumers. Because A. ochraceus and P. nordicum could represent a problem for artisanal speck production, the aim of this study was to inhibit these mould strains using Debaryomyces hansenii and Saccharomycopsis fibuligera. Six D. hansenii and six S. fibuligera strains were tested in vitro to inhibit A. ochraceus and P. nordicum. The D. hansenii DIAL 1 and S. fibuligera DIAL 3 strains demonstrated the highest inhibitory activity and were selected for in vivo tests. The strains were co-inoculated on fresh meat cuts for speck production with both of the OTA-producing moulds prior to drying and seasoning. At the end of seasoning (six months), OTA was not detected in the speck treated with both yeast strains. Because the yeasts did not adversely affect the speck odour or flavour, the strains are proposed as starters for the inhibition of ochratoxigenic moulds.

Biocontrol of ochratoxigenic moulds (Aspergillus ochraceus and Penicillium nordicum) by Debaryomyces hansenii and Saccharomycopsis fibuligera during speck production

IACUMIN, Lucilla
Primo
Data Curation
;
MANZANO, Marisa;COMI, Giuseppe
Ultimo
Writing – Original Draft Preparation
2017-01-01

Abstract

Speck is a meat product obtained from the deboned leg of pork that is salted, smoked and seasoned for four to six months. During speck seasoning, Eurotium rubrum and Penicillium solitum grow on the surface and collaborate with other moulds and tissue enzymes to produce the typical aroma. Both of these strains usually predominate over other moulds. However, moulds producing ochratoxins, such as Aspergillus ochraceus and Penicillium nordicum, can also co-grow on speck and produce ochratoxin A (OTA). Consequently, speck could represent a potential health risk for consumers. Because A. ochraceus and P. nordicum could represent a problem for artisanal speck production, the aim of this study was to inhibit these mould strains using Debaryomyces hansenii and Saccharomycopsis fibuligera. Six D. hansenii and six S. fibuligera strains were tested in vitro to inhibit A. ochraceus and P. nordicum. The D. hansenii DIAL 1 and S. fibuligera DIAL 3 strains demonstrated the highest inhibitory activity and were selected for in vivo tests. The strains were co-inoculated on fresh meat cuts for speck production with both of the OTA-producing moulds prior to drying and seasoning. At the end of seasoning (six months), OTA was not detected in the speck treated with both yeast strains. Because the yeasts did not adversely affect the speck odour or flavour, the strains are proposed as starters for the inhibition of ochratoxigenic moulds.
File in questo prodotto:
File Dimensione Formato  
biocontrol.pdf

non disponibili

Descrizione: manuscript
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Biocontrol2020.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 582.45 kB
Formato Adobe PDF
582.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1101764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 34
social impact