his work investigates the cyclic response and low-cycle fatigue behaviour of a CuAg alloy used in crystallizer for continuous casting lines. Therefore isothermal strain-based fatigue tests are first performed on CuAg specimens at different temperature levels (20 °C, 250 °C, 300 °C). The evolution of stress-strain loops recorded during the cyclic tests is used for the parameter identification of several nonlinear hardening models (nonlinear kinematic, nonlinear isotropic). Cyclic stress-strain data from experiments are compared with results from numerical simulations with the identified material parameters, showing a satisfying agreement. Critical examination of numerical results from different models is also performed. Finally, the strain- life fatigue curves estimated from experimental data are compared with approximate strain-life equations (Universal Slopes Equation, 10% Rule) which are obtained from simple tensile tests. The material parameters determined in this work can conveniently be used as inputs in a elasto- plastic finite element simulations of a crystallizer.

Estimation of material parameters in nonlinear hardening plasticity models and strain life curves for CuAg alloy

BENASCIUTTI, Denis;DE BONA, Francesco;
2016-01-01

Abstract

his work investigates the cyclic response and low-cycle fatigue behaviour of a CuAg alloy used in crystallizer for continuous casting lines. Therefore isothermal strain-based fatigue tests are first performed on CuAg specimens at different temperature levels (20 °C, 250 °C, 300 °C). The evolution of stress-strain loops recorded during the cyclic tests is used for the parameter identification of several nonlinear hardening models (nonlinear kinematic, nonlinear isotropic). Cyclic stress-strain data from experiments are compared with results from numerical simulations with the identified material parameters, showing a satisfying agreement. Critical examination of numerical results from different models is also performed. Finally, the strain- life fatigue curves estimated from experimental data are compared with approximate strain-life equations (Universal Slopes Equation, 10% Rule) which are obtained from simple tensile tests. The material parameters determined in this work can conveniently be used as inputs in a elasto- plastic finite element simulations of a crystallizer.
File in questo prodotto:
File Dimensione Formato  
Novak_2016_IOP_Conf._Ser.__Mater._Sci._Eng._119_012020.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1112755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 17
social impact