A numerical method based on pseudospectral collocation is proposed to approximate the eigenvalues of evolution operators for linear renewal equations, which are retarded functional equations of Volterra type. Rigorous error and convergence analyses are provided, together with numerical tests. The outcome is an efficient and reliable tool which can be used, for instance, to study the local asymptotic stability of equilibria and periodic solutions of nonlinear autonomous renewal equations. Fundamental applications can be found in population dynamics, where renewal equations play a central role.
Approximation of eigenvalues of evolution operators for linear renewal equations
Dimitri Breda;Davide Liessi
2018-01-01
Abstract
A numerical method based on pseudospectral collocation is proposed to approximate the eigenvalues of evolution operators for linear renewal equations, which are retarded functional equations of Volterra type. Rigorous error and convergence analyses are provided, together with numerical tests. The outcome is an efficient and reliable tool which can be used, for instance, to study the local asymptotic stability of equilibria and periodic solutions of nonlinear autonomous renewal equations. Fundamental applications can be found in population dynamics, where renewal equations play a central role.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
M114053.pdf
accesso aperto
Descrizione: Articolo (bozza finale post-revisione)
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
452.26 kB
Formato
Adobe PDF
|
452.26 kB | Adobe PDF | Visualizza/Apri |
M114053.pdf
accesso aperto
Descrizione: Articolo (versione definitiva)
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
395.33 kB
Formato
Adobe PDF
|
395.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.