The problem of uniqueness of limit cycles for the Liénard equation ẍ+f(x)ẋ+g(x)=0 is investigated. The classical assumption of sign-definiteness of f(x) is relaxed. The effectiveness of our result as a perturbation technique is illustrated by some constructive examples of small amplitude limit cycles, coming from bifurcation theory. © 2017 Elsevier Ltd
On the uniqueness of the limit cycle for the Liénard equation with f(x) not sign-definite
Zanolin, Fabio
2018-01-01
Abstract
The problem of uniqueness of limit cycles for the Liénard equation ẍ+f(x)ẋ+g(x)=0 is investigated. The classical assumption of sign-definiteness of f(x) is relaxed. The effectiveness of our result as a perturbation technique is illustrated by some constructive examples of small amplitude limit cycles, coming from bifurcation theory. © 2017 Elsevier LtdFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Villari_Zanolin_AML_2018.pdf
non disponibili
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Villari-Zanolin_AML_preprint.pdf
accesso aperto
Descrizione: Preprint dell'articolo
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
245.49 kB
Formato
Adobe PDF
|
245.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.