The problem of uniqueness of limit cycles for the Liénard equation ẍ+f(x)ẋ+g(x)=0 is investigated. The classical assumption of sign-definiteness of f(x) is relaxed. The effectiveness of our result as a perturbation technique is illustrated by some constructive examples of small amplitude limit cycles, coming from bifurcation theory. © 2017 Elsevier Ltd

On the uniqueness of the limit cycle for the Liénard equation with f(x) not sign-definite

Zanolin, Fabio
2018-01-01

Abstract

The problem of uniqueness of limit cycles for the Liénard equation ẍ+f(x)ẋ+g(x)=0 is investigated. The classical assumption of sign-definiteness of f(x) is relaxed. The effectiveness of our result as a perturbation technique is illustrated by some constructive examples of small amplitude limit cycles, coming from bifurcation theory. © 2017 Elsevier Ltd
File in questo prodotto:
File Dimensione Formato  
Villari_Zanolin_AML_2018.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Villari-Zanolin_AML_preprint.pdf

accesso aperto

Descrizione: Preprint dell'articolo
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 245.49 kB
Formato Adobe PDF
245.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1126646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact