We describe mathematical models and practical algorithms for a problem concerned with monitoring the air pollution in a large city. We have worked on this problem within a project for assessing the air quality in the city of Rome by placing a certain number of sensors on some of the city buses. We cast the problem as a facility location model. By reducing the large number of data variables and constraints, we were able to solve to optimality the resulting MILP model within minutes. Furthermore, we designed a genetic algorithm whose solutions were on average very close to the optimal ones. In our computational experiments we studied the placement of sensors on 187 candidate bus routes. We considered the coverage provided by 10 up to 60 sensors.

A Facility Location Model for Air Pollution Detection

giuseppe lancia
;
franca rinaldi;paolo serafini
2018-01-01

Abstract

We describe mathematical models and practical algorithms for a problem concerned with monitoring the air pollution in a large city. We have worked on this problem within a project for assessing the air quality in the city of Rome by placing a certain number of sensors on some of the city buses. We cast the problem as a facility location model. By reducing the large number of data variables and constraints, we were able to solve to optimality the resulting MILP model within minutes. Furthermore, we designed a genetic algorithm whose solutions were on average very close to the optimal ones. In our computational experiments we studied the placement of sensors on 187 candidate bus routes. We considered the coverage provided by 10 up to 60 sensors.
File in questo prodotto:
File Dimensione Formato  
finalHindawi.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1139502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact