When a linear order has an order preserving surjection onto each of its suborders, we say that it is strongly surjective. We prove that the set of countable strongly surjective linear orders is a Dˇ2(Π11)-complete set. Using hypotheses beyond ZFC, we prove the existence of uncountable strongly surjective orders.
Linear orders: When embeddability and epimorphism agree
Marcone, Alberto
2019-01-01
Abstract
When a linear order has an order preserving surjection onto each of its suborders, we say that it is strongly surjective. We prove that the set of countable strongly surjective linear orders is a Dˇ2(Π11)-complete set. Using hypotheses beyond ZFC, we prove the existence of uncountable strongly surjective orders.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
strongsurj JML.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
458.95 kB
Formato
Adobe PDF
|
458.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
strongsurj_final.pdf
Open Access dal 14/06/2020
Descrizione: post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
467.9 kB
Formato
Adobe PDF
|
467.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.