We give a unified approach to strong maximum principles for a large class of nonlocal operators of order $sin(0,1)$, that includes the Dirichlet, the Neumann Restricted (or Regional) and the Neumann Semirestricted Laplacians.
Strong maximum principles for fractional Laplacians
Musina, Roberta
;
2019-01-01
Abstract
We give a unified approach to strong maximum principles for a large class of nonlocal operators of order $sin(0,1)$, that includes the Dirichlet, the Neumann Restricted (or Regional) and the Neumann Semirestricted Laplacians.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Musina_NazarovMP_v2.pdf
accesso aperto
Descrizione: Musina, R., & Nazarov, A. (2019). Strong maximum principles for fractional Laplacians. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 149(5), 1223-1240. doi:10.1017/prm.2018.81
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
373.49 kB
Formato
Adobe PDF
|
373.49 kB | Adobe PDF | Visualizza/Apri |
2_PRM1800081_PRF.pdf
non disponibili
Descrizione: Musina, R., & Nazarov, A. (2019). Strong maximum principles for fractional Laplacians. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 149(5), 1223-1240. doi:10.1017/prm.2018.81
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
356.79 kB
Formato
Adobe PDF
|
356.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.