We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues.
An Algebraic Approach to Mso-Definability on Countable Linear Orderings
Puppis G.
2018-01-01
Abstract
We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues.File | Dimensione | Formato | |
---|---|---|---|
JSL 2018 Editoriale.pdf
accesso aperto
Descrizione: JSL 2018 versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
JSL 2018 Postprint.pdf
accesso aperto
Descrizione: JSL 2018 versione post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
731.79 kB
Formato
Adobe PDF
|
731.79 kB | Adobe PDF | Visualizza/Apri |
an-algebraic-approach-to-mso-definability-on-countable-linear-orderings.pdf
non disponibili
Descrizione: versione editoriale dal sito editore
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.