The use of predictive modelling tools, which mainly describe the response of microorganisms to a particular set of environmental conditions, may contribute to a better understanding of microbial behaviour in foods. In this paper, a tertiary model, in the form of a readily available and userfriendly web-based application Praedicere Possumus (PP) is presented with research examples from our laboratories. Through the PP application, users have access to different modules, which apply a set of published models considered reliable for determining the compliance of a food product with EU safety criteria and for optimising processing throughout the identification of critical control points. The application pivots around a growth/no-growth boundary model, coupled with a growth model, and includes thermal and non-thermal inactivation models. Integrated functionalities, such as the fractional contribution of each inhibitory factor to growth probability (f) and the time evolution of the growth probability (Pt), have also been included. The PP application is expected to assist food industry and food safety authorities in their common commitment towards the improvement of food safety.

Praedicere possumus: An Italian web-based application for predictive microbiology to ensure food safety

Polese P.
Primo
;
Stecchini M. L.
Ultimo
2018-01-01

Abstract

The use of predictive modelling tools, which mainly describe the response of microorganisms to a particular set of environmental conditions, may contribute to a better understanding of microbial behaviour in foods. In this paper, a tertiary model, in the form of a readily available and userfriendly web-based application Praedicere Possumus (PP) is presented with research examples from our laboratories. Through the PP application, users have access to different modules, which apply a set of published models considered reliable for determining the compliance of a food product with EU safety criteria and for optimising processing throughout the identification of critical control points. The application pivots around a growth/no-growth boundary model, coupled with a growth model, and includes thermal and non-thermal inactivation models. Integrated functionalities, such as the fractional contribution of each inhibitory factor to growth probability (f) and the time evolution of the growth probability (Pt), have also been included. The PP application is expected to assist food industry and food safety authorities in their common commitment towards the improvement of food safety.
File in questo prodotto:
File Dimensione Formato  
6943-34079-2-PB.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 658.63 kB
Formato Adobe PDF
658.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1175875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact