We propose a general methodology to calculate the individual sensitivity and the cross-sensitivities of potentiometric sensor devices (e.g., ion sensitive FETs (ISFETs), CHEMFETs) with an arbitrary number of non-interacting receptors binding to ionic species or analytes in the electrolyte. The surface charge generated at the (bare or functionalized) interface with the electrolyte is described by the Poisson equation coupled to a linear system of equations for each type of receptor, where the unknowns are the fractions of sites binding with a given ion/analyte. Our general model encompasses in a unique framework a few simple special cases so far separately reported in the literature and provides for them closed-form expressions of the average site occupation probability. Detailed procedural description of the usage and benefits of the model is shown for specific cases with concurring surface chemical reactions.

General Approach to Model the Surface Charge Induced by Multiple Surface Chemical Reactions in Potentiometric FET Sensors

Mele L. J.;Palestri P.;Selmi L.
2020-01-01

Abstract

We propose a general methodology to calculate the individual sensitivity and the cross-sensitivities of potentiometric sensor devices (e.g., ion sensitive FETs (ISFETs), CHEMFETs) with an arbitrary number of non-interacting receptors binding to ionic species or analytes in the electrolyte. The surface charge generated at the (bare or functionalized) interface with the electrolyte is described by the Poisson equation coupled to a linear system of equations for each type of receptor, where the unknowns are the fractions of sites binding with a given ion/analyte. Our general model encompasses in a unique framework a few simple special cases so far separately reported in the literature and provides for them closed-form expressions of the average site occupation probability. Detailed procedural description of the usage and benefits of the model is shown for specific cases with concurring surface chemical reactions.
File in questo prodotto:
File Dimensione Formato  
TED20_Mele.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
TED2020_Mele_preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 658.22 kB
Formato Adobe PDF
658.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1177776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact