A prototype SIR model with vaccination at birth is analyzed in terms of the stability of its endemic equilibrium. The information available on the disease influences the parents' decision on whether vaccinate or not. This information is modeled with a delay according to the Erlang distribution. The latter includes the degenerate case of fading memory as well as the limiting case of concentrated memory. The linear chain trick is the essential tool used to investigate the general case. Besides its novel analysis and that of the concentrated case, it is showed that through the linear chain trick a distributed delay approaches a discrete delay at a linear rate. A rigorous proof is given in terms of the eigenvalues of the associated linearized problems and extension to general models is also provided. The work is completed with several computations and relevant experimental results.

How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology

Ando A.;Breda D.;
2020-01-01

Abstract

A prototype SIR model with vaccination at birth is analyzed in terms of the stability of its endemic equilibrium. The information available on the disease influences the parents' decision on whether vaccinate or not. This information is modeled with a delay according to the Erlang distribution. The latter includes the degenerate case of fading memory as well as the limiting case of concentrated memory. The linear chain trick is the essential tool used to investigate the general case. Besides its novel analysis and that of the concentrated case, it is showed that through the linear chain trick a distributed delay approaches a discrete delay at a linear rate. A rigorous proof is given in terms of the eigenvalues of the associated linearized problems and extension to general models is also provided. The work is completed with several computations and relevant experimental results.
File in questo prodotto:
File Dimensione Formato  
mbe-17-05-273_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.6 MB
Formato Adobe PDF
9.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1190404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact