We deal with a weakly coupled system of ODEs of the type xj′′+nj2xj+hj(x1,…,xd)=pj(t),j=1,…,d,with hj locally Lipschitz continuous and bounded, pj continuous and 2 π-periodic, nj∈ N (so that the system is at resonance). By means of a Lyapunov function approach for discrete dynamical systems, we prove the existence of unbounded solutions, when either global or asymptotic conditions on the coupling terms h1, … , hd are assumed.
Unbounded Solutions to Systems of Differential Equations at Resonance
Papini D.
2022-01-01
Abstract
We deal with a weakly coupled system of ODEs of the type xj′′+nj2xj+hj(x1,…,xd)=pj(t),j=1,…,d,with hj locally Lipschitz continuous and bounded, pj continuous and 2 π-periodic, nj∈ N (so that the system is at resonance). By means of a Lyapunov function approach for discrete dynamical systems, we prove the existence of unbounded solutions, when either global or asymptotic conditions on the coupling terms h1, … , hd are assumed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Boscaggin2020_Article_UnboundedSolutionsToSystemsOfD.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
324.07 kB
Formato
Adobe PDF
|
324.07 kB | Adobe PDF | Visualizza/Apri |
BosDamPap_JDDE_2022.pdf
accesso aperto
Descrizione: Versione Editoriale dell'articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
305.46 kB
Formato
Adobe PDF
|
305.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.