Human–robot interaction in board games is a rapidly developing field of robotics. This paper presents a robot capable of playing Russian checkers designed for entertaining, training, and research purposes. Its control program is based on a novel unsupervised self-learning algorithm inspired by AlphaZero and represents the first successful attempt of using this approach in the checkers game. The main engineering challenge in mechanics is to develop a board state acquisition system non-sensitive to lighting conditions, which is achieved by rejecting computer vision and utilizing magnetic sensors instead. An original robot face is designed to endow the robot an ability to express its attributed emotional state. Testing the robot at open-air multiday exhibitions shows the robustness of the design to difficult exploitation conditions and the high interest of visitors to the robot.

Interactive Robot for Playing Russian Checkers

Lorenzo Scalera;
2020-01-01

Abstract

Human–robot interaction in board games is a rapidly developing field of robotics. This paper presents a robot capable of playing Russian checkers designed for entertaining, training, and research purposes. Its control program is based on a novel unsupervised self-learning algorithm inspired by AlphaZero and represents the first successful attempt of using this approach in the checkers game. The main engineering challenge in mechanics is to develop a board state acquisition system non-sensitive to lighting conditions, which is achieved by rejecting computer vision and utilizing magnetic sensors instead. An original robot face is designed to endow the robot an ability to express its attributed emotional state. Testing the robot at open-air multiday exhibitions shows the robustness of the design to difficult exploitation conditions and the high interest of visitors to the robot.
File in questo prodotto:
File Dimensione Formato  
robotics-09-00107.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1195327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact