Given a constant $k>1$, let $Z$ be the family of round spheres of radius {artanh}(k^{-1}) in the hyperbolic space $mathbb{H}^3$, so that any sphere in $Z$ has mean curvature $k$. We prove a crucial nondegeneracy result involving the manifold $Z$. As an application, we provide sufficient conditions on a prescribed function $phi$ on $mathbb{H}^3$, which ensure the existence of a ${cal C}^1$-curve, parametrized by $arepsilonapprox 0$, of embedded spheres in $mathbb{H}^3$ having mean curvature $k +arepsilonphi$ at each point.
Bubbles with constant mean curvature, and almost constant mean curvature, in the hyperbolic space
G. Cora
;R. Musina
2021-01-01
Abstract
Given a constant $k>1$, let $Z$ be the family of round spheres of radius {artanh}(k^{-1}) in the hyperbolic space $mathbb{H}^3$, so that any sphere in $Z$ has mean curvature $k$. We prove a crucial nondegeneracy result involving the manifold $Z$. As an application, we provide sufficient conditions on a prescribed function $phi$ on $mathbb{H}^3$, which ensure the existence of a ${cal C}^1$-curve, parametrized by $arepsilonapprox 0$, of embedded spheres in $mathbb{H}^3$ having mean curvature $k +arepsilonphi$ at each point.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CV - CoraMusina_Hyp_bubbles.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
425.96 kB
Formato
Adobe PDF
|
425.96 kB | Adobe PDF | Visualizza/Apri |
2021_CalcVar_Cora.pdf
Open Access dal 18/09/2022
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
473.24 kB
Formato
Adobe PDF
|
473.24 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.