Given a constant $k>1$, let $Z$ be the family of round spheres of radius {artanh}(k^{-1}) in the hyperbolic space $mathbb{H}^3$, so that any sphere in $Z$ has mean curvature $k$. We prove a crucial nondegeneracy result involving the manifold $Z$. As an application, we provide sufficient conditions on a prescribed function $phi$ on $mathbb{H}^3$, which ensure the existence of a ${cal C}^1$-curve, parametrized by $arepsilonapprox 0$, of embedded spheres in $mathbb{H}^3$ having mean curvature $k +arepsilonphi$ at each point.

Bubbles with constant mean curvature, and almost constant mean curvature, in the hyperbolic space

G. Cora
;
R. Musina
2021-01-01

Abstract

Given a constant $k>1$, let $Z$ be the family of round spheres of radius {artanh}(k^{-1}) in the hyperbolic space $mathbb{H}^3$, so that any sphere in $Z$ has mean curvature $k$. We prove a crucial nondegeneracy result involving the manifold $Z$. As an application, we provide sufficient conditions on a prescribed function $phi$ on $mathbb{H}^3$, which ensure the existence of a ${cal C}^1$-curve, parametrized by $arepsilonapprox 0$, of embedded spheres in $mathbb{H}^3$ having mean curvature $k +arepsilonphi$ at each point.
File in questo prodotto:
File Dimensione Formato  
CV - CoraMusina_Hyp_bubbles.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non pubblico
Dimensione 425.96 kB
Formato Adobe PDF
425.96 kB Adobe PDF Visualizza/Apri
2021_CalcVar_Cora.pdf

Open Access dal 18/09/2022

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 473.24 kB
Formato Adobe PDF
473.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1196533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact