We show that the presence of a transiently excited hot electron gas in graphene leads to a substantial broadening of the C 1s line probed by time-resolved x-ray photoemission spectroscopy. The broadening is found to be caused by an exchange of energy and momentum between the photoemitted core electron and the hot electron gas, rather than by vibrational excitations. This interpretation is supported by a quantitative line-shape analysis that accounts for the presence of the excited electrons. Fitting the spectra to this model directly yields the electronic temperature of the system, in good agreement with electronic temperature values obtained from valence band data. Furthermore, we show how the momentum change of the outgoing core electrons leads to a detectable but very small change in the time-resolved photoelectron diffraction pattern and to a nearly complete elimination of the core level binding energy variation associated with the presence of a narrow sigma band in the C is state.

Ultrafast electronic linewidth broadening in the C 1s core level of graphene

Lizzit, D;
2021-01-01

Abstract

We show that the presence of a transiently excited hot electron gas in graphene leads to a substantial broadening of the C 1s line probed by time-resolved x-ray photoemission spectroscopy. The broadening is found to be caused by an exchange of energy and momentum between the photoemitted core electron and the hot electron gas, rather than by vibrational excitations. This interpretation is supported by a quantitative line-shape analysis that accounts for the presence of the excited electrons. Fitting the spectra to this model directly yields the electronic temperature of the system, in good agreement with electronic temperature values obtained from valence band data. Furthermore, we show how the momentum change of the outgoing core electrons leads to a detectable but very small change in the time-resolved photoelectron diffraction pattern and to a nearly complete elimination of the core level binding energy variation associated with the presence of a narrow sigma band in the C is state.
File in questo prodotto:
File Dimensione Formato  
Curcio_PhysRevB2021.pdf

non disponibili

Descrizione: Main paper
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 904.08 kB
Formato Adobe PDF
904.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1231886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact