This study simulates in vitro the effects of (i) rumen acidity and (ii) change in rumen protozoa numbers on the recovery of aflatoxins (AFs). Two 24-h fermentation experiments were carried out using the same batch in vitro fermentation systems and substrate (dried corn meal) containing 11.42, 2.42, 7.65 and 1.70 µg/kg of AFB1, AFB2, AFG1 and AFG2 respectively. In Experiment 1, two buffer concentrations (normal salts dosage or lowered to 25%) were tested. Buffer reduction decreased gas production (730 vs. 1101 mL, p < 0.05), volatile fatty acids (VFA) and NH3 concentrations in the fermentation liquid (39.8 vs. 46.3 mmol/L, and 31.7 vs. 46.5 mg/dL respectively, p < 0.01). Recovery of all four AFs types was higher (p < 0.01) in the reduced buffer fermentation fluid, both as a percentage of total AF incubated (73.6% vs. 62.5%, 45.9% vs. 38.1%, 33.6% vs. 17.9% and 18.9% vs. 6.24% for AFB1, AFB2, AFG1 and AFG2 respectively) and as amounts relative to VFA production (163.4 vs. 123.5, 22.1 vs. 15.7, 48.8 vs. 22.5 and 6.16 vs. 1.86 ng/100 mmol of VFA, for AFB1, AFB2, AFG1 and AFG2 respectively). In Experiment 2, Stevia rebaudiana Bertoni extracts (S) or a Camphor essential oil (Cam) were added to fermenters and compared to the control (no additives, C). S and Cam addition resulted in a 25% reduction (p < 0.05) and a 15% increase (p < 0.05) in protozoa counts respectively, when compared to C. Both plant additives slightly reduced (p < 0.05) AFB1 recovery as a percentage of total AFB1 incubated (68.5% and 67.7% vs. 74.9% for S, Cam and C respectively). Recoveries of all other AFs were unaffected by the additives. In conclusion, the rumen in vitro AFB1 recovery (63%–75%) was higher than other AFs (3%–46%) and the acidic fermentation environment increased it. In our conditions, changes in protozoa numbers did not affect AFs recovery.

In vitro aflatoxins recovery after changing buffer or protozoa concentrations in the rumen fermentation fluid

Spanghero M.;Braidot M.;Sarnataro C.;Fabro C.;Piani B.;
2023-01-01

Abstract

This study simulates in vitro the effects of (i) rumen acidity and (ii) change in rumen protozoa numbers on the recovery of aflatoxins (AFs). Two 24-h fermentation experiments were carried out using the same batch in vitro fermentation systems and substrate (dried corn meal) containing 11.42, 2.42, 7.65 and 1.70 µg/kg of AFB1, AFB2, AFG1 and AFG2 respectively. In Experiment 1, two buffer concentrations (normal salts dosage or lowered to 25%) were tested. Buffer reduction decreased gas production (730 vs. 1101 mL, p < 0.05), volatile fatty acids (VFA) and NH3 concentrations in the fermentation liquid (39.8 vs. 46.3 mmol/L, and 31.7 vs. 46.5 mg/dL respectively, p < 0.01). Recovery of all four AFs types was higher (p < 0.01) in the reduced buffer fermentation fluid, both as a percentage of total AF incubated (73.6% vs. 62.5%, 45.9% vs. 38.1%, 33.6% vs. 17.9% and 18.9% vs. 6.24% for AFB1, AFB2, AFG1 and AFG2 respectively) and as amounts relative to VFA production (163.4 vs. 123.5, 22.1 vs. 15.7, 48.8 vs. 22.5 and 6.16 vs. 1.86 ng/100 mmol of VFA, for AFB1, AFB2, AFG1 and AFG2 respectively). In Experiment 2, Stevia rebaudiana Bertoni extracts (S) or a Camphor essential oil (Cam) were added to fermenters and compared to the control (no additives, C). S and Cam addition resulted in a 25% reduction (p < 0.05) and a 15% increase (p < 0.05) in protozoa counts respectively, when compared to C. Both plant additives slightly reduced (p < 0.05) AFB1 recovery as a percentage of total AFB1 incubated (68.5% and 67.7% vs. 74.9% for S, Cam and C respectively). Recoveries of all other AFs were unaffected by the additives. In conclusion, the rumen in vitro AFB1 recovery (63%–75%) was higher than other AFs (3%–46%) and the acidic fermentation environment increased it. In our conditions, changes in protozoa numbers did not affect AFs recovery.
File in questo prodotto:
File Dimensione Formato  
In vitro aflatoxins recovery after changing buffer or protozoa.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 930.5 kB
Formato Adobe PDF
930.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1246341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact