In this paper, we propose a comparison of open-source LiDAR and Inertial Measurement Unit (IMU)-based Simultaneous Localization and Mapping (SLAM) approaches for 3D robotic mapping. The analyzed algorithms are often exploited in mobile robotics for autonomous navigation but have not been evaluated in terms of 3D reconstruction yet. Experimental tests are carried out using two different autonomous mobile platforms in three test cases, comprising both indoor and outdoor scenarios. The 3D models obtained with the different SLAM algorithms are then compared in terms of density, accuracy, and noise of the point clouds to analyze the performance of the evaluated approaches. The experimental results indicate the SLAM methods that are more suitable for 3D mapping in terms of the quality of the reconstruction and highlight the feasibility of mobile robotics in the field of autonomous mapping.
Comparing LiDAR and IMU-based SLAM approaches for 3D robotic mapping
Scalera, LSecondo
;Maset, EUltimo
2023-01-01
Abstract
In this paper, we propose a comparison of open-source LiDAR and Inertial Measurement Unit (IMU)-based Simultaneous Localization and Mapping (SLAM) approaches for 3D robotic mapping. The analyzed algorithms are often exploited in mobile robotics for autonomous navigation but have not been evaluated in terms of 3D reconstruction yet. Experimental tests are carried out using two different autonomous mobile platforms in three test cases, comprising both indoor and outdoor scenarios. The 3D models obtained with the different SLAM algorithms are then compared in terms of density, accuracy, and noise of the point clouds to analyze the performance of the evaluated approaches. The experimental results indicate the SLAM methods that are more suitable for 3D mapping in terms of the quality of the reconstruction and highlight the feasibility of mobile robotics in the field of autonomous mapping.File | Dimensione | Formato | |
---|---|---|---|
Robotica_2023_paper.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.