The physics-based design and realization of a digital musical interface asks for the modeling and implementation of the contact-point interaction with the performer. Musical instruments always include a resonator that converts the input energy into sound, meanwhile feeding part of it back to the performer through the same point. Specifically during plucking or bowing interactions, musicians receive a handful of information from the force feedback and vibrations coming from the contact points. This paper focuses on the design and realization of digital music interfaces realizing two physical interactions along with a musically unconventional one, rubbing, rarely encountered in assimilable forms across the centuries on a few instruments. Therefore, it aims to highlight the significance of haptic rendering in improving quality during a musical experience as opposed to interfaces provided with a passive contact point. Current challenges are posed by the specific requirements of the haptic device, as well as the computational effort needed for realizing such interactions without occurrence during the performance of typical digital artifacts such as latency and model instability. Both are however seemingly transitory due to the constant evolution of computer systems for virtual reality and the progressive popularization of haptic interfaces in the sonic interaction design community. In summary, our results speak in favor of adopting nowadays haptic technologies as an essential component for digital musical interfaces affording point-wise contact interactions in the personal performance space.

Perceptual Relevance of Haptic Feedback during Virtual Plucking, Bowing and Rubbing of Physically-Based Musical Resonators

Fontana, Federico;
2023-01-01

Abstract

The physics-based design and realization of a digital musical interface asks for the modeling and implementation of the contact-point interaction with the performer. Musical instruments always include a resonator that converts the input energy into sound, meanwhile feeding part of it back to the performer through the same point. Specifically during plucking or bowing interactions, musicians receive a handful of information from the force feedback and vibrations coming from the contact points. This paper focuses on the design and realization of digital music interfaces realizing two physical interactions along with a musically unconventional one, rubbing, rarely encountered in assimilable forms across the centuries on a few instruments. Therefore, it aims to highlight the significance of haptic rendering in improving quality during a musical experience as opposed to interfaces provided with a passive contact point. Current challenges are posed by the specific requirements of the haptic device, as well as the computational effort needed for realizing such interactions without occurrence during the performance of typical digital artifacts such as latency and model instability. Both are however seemingly transitory due to the constant evolution of computer systems for virtual reality and the progressive popularization of haptic interfaces in the sonic interaction design community. In summary, our results speak in favor of adopting nowadays haptic technologies as an essential component for digital musical interfaces affording point-wise contact interactions in the personal performance space.
File in questo prodotto:
File Dimensione Formato  
arts-12-00144.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.37 MB
Formato Adobe PDF
6.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1252864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact