An experimental setup to test optimal time-jerk trajectories for robotic manipulators is presented in this paper. The setup is used, in this work, to test the execution of smooth motion profiles passing through a sequence of via-points, designed by means of the optimization of a mixed time-jerk cost function. Experimental tests are performed on a Franka Emika robot with seven degrees of freedom equipped with accelerometers to measure the motion-induced oscillations of the end-effector. The experimental results show a good agreement with the numerical tests and demonstrate the feasibility of the approach chosen for optimizing smooth trajectories for robotic manipulators.
An Experimental Setup to Test Time-Jerk Optimal Trajectories for Robotic Manipulators
Lozer F.;Scalera L.;Boscariol P.;Gasparetto A.
2023-01-01
Abstract
An experimental setup to test optimal time-jerk trajectories for robotic manipulators is presented in this paper. The setup is used, in this work, to test the execution of smooth motion profiles passing through a sequence of via-points, designed by means of the optimization of a mixed time-jerk cost function. Experimental tests are performed on a Franka Emika robot with seven degrees of freedom equipped with accelerometers to measure the motion-induced oscillations of the end-effector. The experimental results show a good agreement with the numerical tests and demonstrate the feasibility of the approach chosen for optimizing smooth trajectories for robotic manipulators.File | Dimensione | Formato | |
---|---|---|---|
paper_RAAD_2023.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
3.49 MB
Formato
Adobe PDF
|
3.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.