We deal with the non-autonomous parameter-dependent second-order differential equation [Formula presented] driven by a Minkowski-curvature operator. Here, δ>0, q∈L∞(R), f:[0,1]→R is a continuous function with f(0)=f(1)=0=f(α) for some α∈]0,1[, f(s)<0 for all s∈]0,α[ and f(s)>0 for all s∈]α,1[. Based on a careful phase-plane analysis, under suitable assumptions on q we prove the existence of strictly increasing heteroclinic solutions and of homoclinic solutions with a unique change of monotonicity. Then, we analyze the asymptotic behavior of such solutions both for δ→0+ and for δ→+∞. Some numerical examples illustrate the stated results.

Homoclinic and heteroclinic solutions for non-autonomous Minkowski-curvature equations

Feltrin, Guglielmo
;
2024-01-01

Abstract

We deal with the non-autonomous parameter-dependent second-order differential equation [Formula presented] driven by a Minkowski-curvature operator. Here, δ>0, q∈L∞(R), f:[0,1]→R is a continuous function with f(0)=f(1)=0=f(α) for some α∈]0,1[, f(s)<0 for all s∈]0,α[ and f(s)>0 for all s∈]α,1[. Based on a careful phase-plane analysis, under suitable assumptions on q we prove the existence of strictly increasing heteroclinic solutions and of homoclinic solutions with a unique change of monotonicity. Then, we analyze the asymptotic behavior of such solutions both for δ→0+ and for δ→+∞. Some numerical examples illustrate the stated results.
File in questo prodotto:
File Dimensione Formato  
Feltrin_Garrione_NA_2024.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1266548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact