We investigate the role of two main scattering mechanisms responsible for mobility degradation in ultrashort electron devices like silicon-nanowire FETs. We consider electron-phonon interaction and surface roughness (SR) at the Si/SiO(2) interface as sources of inelastic and elastic scatterings. We address a full-quantum treatment within the nonequilibrium Green's function formalism, which allows us to take quantum confinement, quantum-phase interference, out of equilibrium, and quasi-ballistic transport into account. Our results show that both phonon- and SR-limited mobilities strongly depend on the channel length due to the importance of nonuniform scattering in ultrashort devices and contribute to understand the strong mobility reduction of decananometric devices.
Channel-Length Dependence of Low-Field Mobility in Silicon-Nanowire FETs
Pala M
2009-01-01
Abstract
We investigate the role of two main scattering mechanisms responsible for mobility degradation in ultrashort electron devices like silicon-nanowire FETs. We consider electron-phonon interaction and surface roughness (SR) at the Si/SiO(2) interface as sources of inelastic and elastic scatterings. We address a full-quantum treatment within the nonequilibrium Green's function formalism, which allows us to take quantum confinement, quantum-phase interference, out of equilibrium, and quasi-ballistic transport into account. Our results show that both phonon- and SR-limited mobilities strongly depend on the channel length due to the importance of nonuniform scattering in ultrashort devices and contribute to understand the strong mobility reduction of decananometric devices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.