We study the full counting statistics of charge transport through a quantum dot tunnel coupled to one normal and one superconducting lead with a large superconducting gap. As a function of the level detuning, there is a crossover from a regime with strong superconducting correlations in the quantum dot to a regime in which the proximity effect on the quantum dot is suppressed. We analyze the current fluctuations of this crossover in the shot-noise regime. In particular, we predict that the full counting statistics changes from Poissonian with charge 2e, typical for Cooper pairs, to Poissonian with charge e, When the superconducting proximity effect is present. Thus, the onset of the superconducting proximity effect is revealed by the reduction of the Fano factor from 2 to 1. (C) 2010 Elsevier Ltd. All rights reserved.
Superconducting proximity effect in interacting quantum dots revealed by shot noise
Pala M;
2011-01-01
Abstract
We study the full counting statistics of charge transport through a quantum dot tunnel coupled to one normal and one superconducting lead with a large superconducting gap. As a function of the level detuning, there is a crossover from a regime with strong superconducting correlations in the quantum dot to a regime in which the proximity effect on the quantum dot is suppressed. We analyze the current fluctuations of this crossover in the shot-noise regime. In particular, we predict that the full counting statistics changes from Poissonian with charge 2e, typical for Cooper pairs, to Poissonian with charge e, When the superconducting proximity effect is present. Thus, the onset of the superconducting proximity effect is revealed by the reduction of the Fano factor from 2 to 1. (C) 2010 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.