We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results and a couple of applications in view of bifurcation analysis.

Piecewise orthogonal collocation for computing periodic solutions of renewal equations

Alessia Andò
;
Dimitri Breda
2023-01-01

Abstract

We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results and a couple of applications in view of bifurcation analysis.
File in questo prodotto:
File Dimensione Formato  
2023_ACOM_andò_breda.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 874.32 kB
Formato Adobe PDF
874.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact