We relate non integer powers ${\mathcal L}^{s}$, $s>0$ of a given (unbounded) positive self-adjoint operator $\mathcal L$ in a real separable Hilbert space $\mathcal H$ with a certain differential operator of order $2\lceil{s}\rceil$, acting on even curves $\mathbb R\to \mathcal H$. This extends the results by Caffarelli--Silvestre and Stinga--Torrea regarding the characterization of fractional powers of differential operators via an extension problem.
Fractional operators as traces of operator-valued curves
R. Musina
;
2024-01-01
Abstract
We relate non integer powers ${\mathcal L}^{s}$, $s>0$ of a given (unbounded) positive self-adjoint operator $\mathcal L$ in a real separable Hilbert space $\mathcal H$ with a certain differential operator of order $2\lceil{s}\rceil$, acting on even curves $\mathbb R\to \mathcal H$. This extends the results by Caffarelli--Silvestre and Stinga--Torrea regarding the characterization of fractional powers of differential operators via an extension problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2024_JFA_extension_curves.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
524.89 kB
Formato
Adobe PDF
|
524.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.