We relate non integer powers ${\mathcal L}^{s}$, $s>0$ of a given (unbounded) positive self-adjoint operator $\mathcal L$ in a real separable Hilbert space $\mathcal H$ with a certain differential operator of order $2\lceil{s}\rceil$, acting on even curves $\mathbb R\to \mathcal H$. This extends the results by Caffarelli--Silvestre and Stinga--Torrea regarding the characterization of fractional powers of differential operators via an extension problem.

Fractional operators as traces of operator-valued curves

R. Musina
;
2024-01-01

Abstract

We relate non integer powers ${\mathcal L}^{s}$, $s>0$ of a given (unbounded) positive self-adjoint operator $\mathcal L$ in a real separable Hilbert space $\mathcal H$ with a certain differential operator of order $2\lceil{s}\rceil$, acting on even curves $\mathbb R\to \mathcal H$. This extends the results by Caffarelli--Silvestre and Stinga--Torrea regarding the characterization of fractional powers of differential operators via an extension problem.
File in questo prodotto:
File Dimensione Formato  
2024_JFA_extension_curves.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 524.89 kB
Formato Adobe PDF
524.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1273565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact