This paper reports physically based numerical calculations on the relative importance of hot carrier induced photon emission and impact ionization in generating the substrate current of thin oxide MOS capacitors. In particular, we demonstrate that the generation efficiency of photons with energy above the band gap energy is at least 104 smaller than that of electron–hole pairs by impact ionization. Results provide a direct evidence that photon emission can not explain the substrate current which is measured during tunneling experiments from the gate, and set a lower limit to the probability of hole back-tunneling that could make anode hole injection the dominant substrate current generation mechanism in tunneling experiments from the inverted substrate.

Can photon emission/absorption processes explain the substrate current of tunneling MOS capacitors ?

PALESTRI, Pierpaolo;SELMI, Luca
2002-01-01

Abstract

This paper reports physically based numerical calculations on the relative importance of hot carrier induced photon emission and impact ionization in generating the substrate current of thin oxide MOS capacitors. In particular, we demonstrate that the generation efficiency of photons with energy above the band gap energy is at least 104 smaller than that of electron–hole pairs by impact ionization. Results provide a direct evidence that photon emission can not explain the substrate current which is measured during tunneling experiments from the gate, and set a lower limit to the probability of hole back-tunneling that could make anode hole injection the dominant substrate current generation mechanism in tunneling experiments from the inverted substrate.
File in questo prodotto:
File Dimensione Formato  
2002_07_SSE_DallaSerra_CanPhotonEmission.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 125.68 kB
Formato Adobe PDF
125.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/669907
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact