A technique for optimal trajectory planning of robot manipulators is presented in this paper. In order to get the optimal trajectory, an objective function composed of two terms is minimized: a first term proportional to the total execution time and another one proportional to the integral of the squared jerk (defined as the derivative of the acceleration) along the trajectory. This latter term ensures that the resulting trajectory is smooth enough. The proposed technique enables one to take into account kinematic constraints on the robot motion, expressed as upper bounds on the absolute values of velocity, acceleration and jerk. Moreover, it does not require the total execution time of the trajectory to be set a priori. The algorithm has been tested in simulation yielding good results, also in comparison with those provided by another important trajectory planning technique.
A Technique for Time-Jerk Optimal Planning of Robot Manipulators
GASPARETTO, Alessandro;
2008-01-01
Abstract
A technique for optimal trajectory planning of robot manipulators is presented in this paper. In order to get the optimal trajectory, an objective function composed of two terms is minimized: a first term proportional to the total execution time and another one proportional to the integral of the squared jerk (defined as the derivative of the acceleration) along the trajectory. This latter term ensures that the resulting trajectory is smooth enough. The proposed technique enables one to take into account kinematic constraints on the robot motion, expressed as upper bounds on the absolute values of velocity, acceleration and jerk. Moreover, it does not require the total execution time of the trajectory to be set a priori. The algorithm has been tested in simulation yielding good results, also in comparison with those provided by another important trajectory planning technique.File | Dimensione | Formato | |
---|---|---|---|
RobCIM2008.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
512.71 kB
Formato
Adobe PDF
|
512.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.