This paper presents a real-time piano synthesizer where both the transverse and longitudinal motion of the string is modeled by modal synthesis, resulting in a coherent and highly parallel model structure. The paper applies recent developments in piano modeling and focuses on the issues related to practical implementation (e.g., numerical stability, aliasing, and efficiency). A strong emphasis is given to modeling nonlinear string vibrations, and a new variation of earlier synthesis techniques is proposed which is particularly well suited for modal synthesis. For soundboard modeling, the possibilities of using fast Fourier transform-based fast convolution and parallel second-order filters are discussed. Additionally, the paper describes the details of the software implementation and discusses the computational complexity of each model block. The piano model runs on current computer hardware with full polyphony in real time.

A Modal-Based Real-Time Piano Synthesizer

FONTANA, Federico
2010-01-01

Abstract

This paper presents a real-time piano synthesizer where both the transverse and longitudinal motion of the string is modeled by modal synthesis, resulting in a coherent and highly parallel model structure. The paper applies recent developments in piano modeling and focuses on the issues related to practical implementation (e.g., numerical stability, aliasing, and efficiency). A strong emphasis is given to modeling nonlinear string vibrations, and a new variation of earlier synthesis techniques is proposed which is particularly well suited for modal synthesis. For soundboard modeling, the possibilities of using fast Fourier transform-based fast convolution and parallel second-order filters are discussed. Additionally, the paper describes the details of the software implementation and discusses the computational complexity of each model block. The piano model runs on current computer hardware with full polyphony in real time.
File in questo prodotto:
File Dimensione Formato  
finalTASL.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 553.24 kB
Formato Adobe PDF
553.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/697198
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 20
social impact