This paper presents a microscopic analysis of signal propagation delay in bipolar transistors featuring relevant non-equilibrium transport effects. First, the physical mechanisms responsible of signal delay are reviewed. A novel technique to extract signal delays from self-consistent Monte Carlo device simulations is presented. These results are then used for a physically based comparison between compact quasi-static delay formulas and more accurate particle simulations carried out over a broad range of collector currents.

Non-local microscopic view of signal propagation times in BJTs biased up to high currents

PALESTRI, Pierpaolo;SELMI, Luca
2001-01-01

Abstract

This paper presents a microscopic analysis of signal propagation delay in bipolar transistors featuring relevant non-equilibrium transport effects. First, the physical mechanisms responsible of signal delay are reviewed. A novel technique to extract signal delays from self-consistent Monte Carlo device simulations is presented. These results are then used for a physically based comparison between compact quasi-static delay formulas and more accurate particle simulations carried out over a broad range of collector currents.
File in questo prodotto:
File Dimensione Formato  
2001_10_SSE_Palestri_NonLocalMicroscopic.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 262.7 kB
Formato Adobe PDF
262.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/720852
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact