The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to teaching terms satisfying prerequisites and balancing the credit course load within each term. The BACP is part of the CSPLib with three benchmark instances, but its formulation is simpler than the problem solved in practice by universities. In this article, we introduce a generalized version of the problem that takes different curricula and professor preferences into account, and we provide a set of real-life problem instances arisen at University of Udine. Since the existing formulation based on a min–max objective function does not balance effectively the credit load for the new instances, we also propose alternative objective functions. Whereas all the CSPLib instances are efficiently solved with Integer Linear Programming (ILP) state-of-the-art solvers, our new set of real-life instances turns out to be much more challenging and still intractable for ILP solvers. Therefore, we have designed, implemented, and analyzed heuristics based on local search. We have collected computational results on all the new instances with the proposed approaches and assessed the quality of solutions with respect to the lower bounds found by ILP on a relaxed and decomposed problem. Results show that a selected heuristic finds solutions of quality at 9%–60% distance from the lower bound. We make all data publicly available, in order to stimulate further research on this problem.
The balanced academic curriculum problem revisited
DI GASPERO, Luca;SCHAERF, Andrea
2012-01-01
Abstract
The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to teaching terms satisfying prerequisites and balancing the credit course load within each term. The BACP is part of the CSPLib with three benchmark instances, but its formulation is simpler than the problem solved in practice by universities. In this article, we introduce a generalized version of the problem that takes different curricula and professor preferences into account, and we provide a set of real-life problem instances arisen at University of Udine. Since the existing formulation based on a min–max objective function does not balance effectively the credit load for the new instances, we also propose alternative objective functions. Whereas all the CSPLib instances are efficiently solved with Integer Linear Programming (ILP) state-of-the-art solvers, our new set of real-life instances turns out to be much more challenging and still intractable for ILP solvers. Therefore, we have designed, implemented, and analyzed heuristics based on local search. We have collected computational results on all the new instances with the proposed approaches and assessed the quality of solutions with respect to the lower bounds found by ILP on a relaxed and decomposed problem. Results show that a selected heuristic finds solutions of quality at 9%–60% distance from the lower bound. We make all data publicly available, in order to stimulate further research on this problem.File | Dimensione | Formato | |
---|---|---|---|
fulltext3.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
jheur2012.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.