H9c2 undergoing cardiac differentiation induced by all-trans-retinoic acid were investigated for mitochondria structural features together with the implied functional changes, as a model for the study of mitochondrial development in cardiogenic progenitor cells. As the expression of cardiac markers became detectable, mitochondrial mass increased and mitochondrial morphology and ultrastructure changed. Reticular network organization developed and more bulky mitochondria with greater numbers of closely packed cristae and more electron-dense matrix were detected. Increased expression of PGC-1α proved the occurrence of mitochondrial biogenesis. Improvements in mitochondrial energetic competence were also documented, linked to better assembly between F(0) and F(1) sectors of the F(0)F(1)ATPsynthase enzyme complex.
Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts
COMELLI, Marina;DOMENIS, Rossana;BISETTO, Elena;CONTIN, Magali;MARCHINI, Maurizio;ORTOLANI, Fulvia;TOMASETIG, Lara;MAVELLI, Irene
2011-01-01
Abstract
H9c2 undergoing cardiac differentiation induced by all-trans-retinoic acid were investigated for mitochondria structural features together with the implied functional changes, as a model for the study of mitochondrial development in cardiogenic progenitor cells. As the expression of cardiac markers became detectable, mitochondrial mass increased and mitochondrial morphology and ultrastructure changed. Reticular network organization developed and more bulky mitochondria with greater numbers of closely packed cristae and more electron-dense matrix were detected. Increased expression of PGC-1α proved the occurrence of mitochondrial biogenesis. Improvements in mitochondrial energetic competence were also documented, linked to better assembly between F(0) and F(1) sectors of the F(0)F(1)ATPsynthase enzyme complex.File | Dimensione | Formato | |
---|---|---|---|
Comelli et al, 2011.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.